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Maintain a code repository

Automate the build

Make the build self-testing

Merge changes into a shared mainline several times a day

Every commit to mainline should build

Keep the build fast

 Test in a clone of the production environment

Make it easy to get the latest deliverables

Everyone can see the results of the latest build

Automate deployment

Continuous Integration Principles
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Continuous Deployment
• Continuous Integration

• Automatically deploy after each change

Continuous Delivery
• Continuous Integration

• Automatically build a candidate after each change that could potentially be 
deployed

• Deployment process is automated but requires approval

• (e. g. one click deployment or push-to-deploy)

Continuous Delivery

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 3



Overall we do not expect to save a significant amount of development 
time, but…

Allows faster turn-around times

Helps to catch issues before code is
deployed to production system

 Full traceability

No risk of breaking anything
(you can always roll back)

Facilitates team work

Why Use Continuous Delivery?
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Continuous Delivery At FRIB
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 Jenkins master and build slaves are managed by Puppet

 Jenkins jobs are automatically generated using Jenkins Job Builder
• Input: short YAML descriptions of the jobs + job templates

• Output: Jenkins jobs created/changed through API

• Puppet runs Jenkins Job Builder periodically

Automation makes sure
• We can easily add more build nodes/jobs

• All build machines are exactly the same

• All jobs of a family (e. g. Debian package jobs) are using the same rules

Managing Jenkins
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Additional “FRIB” script extracts build dependencies from repositories 
and translates them into Jenkins triggers
• Backward dependencies (“depends on”) are translated into forward 

dependencies (“triggers”) automatically

• Puppet automatically runs this script before running JJB

A graphical representation of the dependencies is available on the 
Jenkins web GUI

Dependencies between Debian Packages I
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Dependencies between Debian Packages II
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Dependencies between Debian Packages III
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 Jenkins: http://jenkins-ci.org

 Jenkins Debian Glue: http://jenkins-debian-glue.org

 Jenkins Job Builder: http://ci.openstack.org/jenkins-job-builder/

 Lintian: http://lintian.debian.org

Package Installation, Upgrading and Removal Testing Suite: 
http://piuparts.debian.org

Puppet: http://puppetlabs.com

Puppet modules and Vagrant files for EPICS: http://stash.nscl.msu.edu

Downloads
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